
How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Revision: 1.6.0
Date: 2023-03-30

Copyright: 2023 Vision Components GmbH Ettlingen, Germany
Author: VC Support

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document
Symbol Meaning

The Light bulb highlights hints and ideas that may be helpful for a development.

This warning sign alerts of possible pitfalls to avoid. Please pay careful attention to sections marked with this sign.

This is a sign for an example.

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

How to setup a VC MIPI MODULE on a Raspberry PI Compute
IO Board 3

Hardware and Software Setup

Foreword and Disclaimer
This documentation has been prepared with most possible care. However Vision Components GmbH does not take any liability for possible errors. In the interest of progress,
Vision Components GmbH reserves the right to perform technical changes without further notice.
Please notify support@vision-components.com if you become aware of any errors in this manual or if a certain topic requires more detailed documentation.
This manual is intended for information of Vision Component’s customers only. Any publication of this document or parts thereof requires written permission by Vision
Components GmbH.

Image symbols used in this document

Trademarks
Linux, Debian, the Tux logo, Vivado, Xilinx and Zynq, ARM, Cortex, Windows XP, Total Commander, Tera Term, Motorola, HALCON, FreeRTOS, Vision Components are
registered Trademarks. All trademarks are the property of their respective owners.
Raspberry Pi and Raspbian are also registered Trademarks.
ESD sensitivity

Warning
The components are very sensitive to electrostatic discharge (ESD)! Please take all the precautions necessary to avoid ESD!

ESD
The electronic components and circuits are sensitive to ElectroStatic Discharge (ESD). When handling any circuit board assemblies, it is necessary that ESD safety
precautions be observed.
ESD safe best practices include, but are not limited to:

Leaving circuit boards in their antistatic packaging until they are ready to be installed.
Using a grounded wrist strap when handling circuit boards.
Working on a grounded ESD table mat.
Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
Avoiding handling circuit boards in carpeted areas.
Try to handle the board by the edges, avoiding contact with components.

This note is not an exhaustive information about the protection against electrostatic discharge (ESD).

mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com
mailto:support@vision-components.com

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

Table of Contents
1 Hardware Setup

1.1 Hardware Pre-Check: Install Raspbian
1.2 Connect the MIPI module
1.3 Optional: Trigger input (if supported)
1.4 Optional: Connect a second MIPI module

1.4.1 Additional cable setup

2 Software Setup

2.1 Get the driver and demo code
2.2 Install necessary Raspberry Pi OS packages
2.3 Driver Installation
2.4 First Image Acquisition Test
2.5 Running the Demo

2.5.1 Compile the programs
2.5.2 Execute the demo

2.6 Switching Sensor Configuration

2.6.1 Sensor modes
2.6.2 Sensor modes description
2.6.3 IO configuration
2.6.4 Self-triggered mode

3 Troubleshooting and Background Information

3.1 Q/A
3.2 Driver Knowledge

3.2.1 Providing device tree overlays
3.2.2 Set up the I²C bus for driver-sensor communication
3.2.3 Providing the sensor driver as kernel module
3.2.4 Reserving Contiguous Memory for the Image Captures

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

1 Hardware Setup
Note

The power supply must at least provide 2.5A at 5V.

1.1 Hardware Pre-Check: Install Raspbian

First step is to install Raspberry Pi OS from

https://www.raspberrypi.com/software/operating-systems/

The driver is compatible with kernel versions 5.4, 5.10, 5.15 and 6.1 (32-bit and 64-bit), so download the appropriate Raspberry Pi OS version. Raspberry Pi OS Buster Lite
is sufficient, and this guide expects this version to be installed not only for the framebuffer output handling.
For more installation instructions see the Raspberry Pi OS Installation Manual; the procedure depends on the platform type where the OS is going to be installed.

(Original site may look different) Install Raspberry Pi OS by following the instructions provided there

The display shows a login prompt after successful installation. If this is not the case, you have to check your Raspberry Pi OS installation. The most relevant information to
succeed can be found at the Raspberry Pi OS website or on the web.

Raspberry Pi OS showing login screen (user is usually pi with password raspberry)

1.2 Connect the MIPI module

Warning

Always disconnect all cables before connecting or disconnecting the MIPI module!

The ends of the MIPI module connector cable is marked with the hardware to connect to. Open the socket connectors first by raising their lid, insert the cable and press their
lid back when mounted correctly. You should then not be able to pull the cable out.

https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/
https://www.raspberrypi.com/software/operating-systems/

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

Open the MIPI module socket, put in the cable, close the MIPI module socket

Warning

The connection at this type of socket is not protected against bad alignment, so always check the orthogonality, and if it is bent, correct it! Also watch out for the
right orientation of the cable! The MIPI module or the board connected on the other side can be irrevocably damaged if the cable is not inserted the right way, and
warranty is lost!

Harmfully angled (left) and good (right) cable fixation

The socket type is also not protected against wrong orientation, so compare your setup to the figures below before switching the power on.

Watch the orientation of the cable (left: bad, right: good)

Connect the MIPI sensor to the socket named CAM1.

Connect the cable to the CAM1 socket and watch out for the cable orientation

The I²C bus named VC is used for sensor communication and must be connected by a cable bridge to the CAM1 socket's I²C bus pins.
Therefore connect the

pin named 44 with the pin named CD1_SDA as well as the
pin named 45 with the pin named CD1_SCL

at the J6 GPIO connector.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

At the J6 connector: I²C cable bridge to the CAM1 socket.

Warning

Do not connect other devices to the I²C bus named VC, since it can affect the communication between the camera sensor and the driver!
For example, running the touch screen of the Raspberry PI 7 inch display will lead to communication problems between driver and camera sensor. The display may
work with the following line appended to the /boot/config.txt, but test first without connecting it to the Raspberry PI to be sure everything works so far:

disable_touchscreen=1

Reconnect the other peripherials to the Raspberry Pi.

Connection setup for the first image acquisition test.

You should have the login prompt back after switching the system on.

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Raspbian showing login screen (user is usually pi with password raspberry)

1.3 Optional: Trigger input (if supported)

If the MIPI sensor supports it, you can trigger it externally for an image capture. To do so, connect - for example - a frequency generator between CAM1_IO0 and GND.

Additional cables at trigger input

To trigger the sensor,
1. choose an appropriate sensor mode which supports external triggering (see the driver's setmode), and
2. give a +3.3V impulse on the CAM1_IO0 pin

Default: Trigger input at rising edge.

Warning

The impulse voltage may not exceed +3.3V, or the hardware will be damaged and warranty is lost!

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

Connection setup with an external trigger source.

1.4 Optional: Connect a second MIPI module

We assume that the same type of sensor is connected to the other port, but this is no limitation. You may connect a different sensor to the other socket.

Note

It is best practice to start with one single sensor first, and if it works to come back here.
You have to understand how the I²C bus is configured and how the CSI port is selected as well as how to edit and handle device tree overlays to get the second
MIPI module working -- see the Driver Knowledge section for that.

1.4.1 Additional cable setup

The second sensor will be connected to the socket named CAM0. Its corresponding I²C pins at the J6 GPIO connector are CD0_SDA and CD0_SCL. We will use the
second I²C bus i2c_arm to connect to the second sensor. Its data lane is at pin 2 while its clock signal resides at pin 3 of the J5 GPIO connector.
Therefore connect the J5 GPIO connector's

pin named 2 with the pin named CD0_SDA as well as the
pin named 3 with the pin named CD0_SCL

at the J6 GPIO connector.

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

I²C cable bridge to the CAM1 socket. Connected second sensor to CAM0 and

2 Software Setup

2.1 Get the driver and demo code

You can download the driver and demo code from the following links.

Driver: vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
Demo code: vcmipidemo_0.7.0.zip

2.2 Install necessary Raspberry Pi OS packages

Before beginning with the installation, do the following steps first. This requires your Raspberry PI to already have an internet connection; otherwise you have to install the
packages mentioned manually, search the web for the procedure needed.

1. Update the raspberrypi-kernel package and your system by calling:

sudo apt-get update && sudo apt-get upgrade

2. Reboot.
3. Install the raspberrypi-kernel-headers and device-tree-compiler package by using the following command:

sudo apt-get install raspberrypi-kernel-headers device-tree-compiler

4. Test if the version of the running kernel matches the version of the kernel headers, the following command should show the directory for compiling the sensor module
kernel module driver:

ls "/usr/src/linux-headers-$(uname -r)"

5. Install the dkms package with:

sudo apt-get install dkms

2.3 Driver Installation

https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip
https://files.vision-components.com/mipi/vc-mipi-driver-bcm2835-dkms_0.2.7_all.zip
https://files.vision-components.com/mipi/vcmipidemo_0.7.0.zip

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Note

If you already installed an older version of the driver, an update will not modify the device tree files and the configuration files, in case customers made their own
changes. If you wish to update the device tree files and the configuration files together with the driver it is necessary to deinstall the driver first and to delete the
device tree files with the following commands:

sudo apt-get purge vc-mipi-driver-bcm2835-dkms
sudo rm -rf /boot/config_vc*
sudo rm -rf /boot/overlays/vc-mipi*

Warning

It is important that the date and time of your Raspberry Pi are set correctly! You can set the date and time using NTP:

sudo apt-get install ntpdate
ntpdate ip_address_of_ntp_server

Or you can use the command "date":

sudo date -s "2021-08-20 09:41:00"

In both cases store the time and date in the hardware clock:

sudo hwclock -w

1. Copy the driver debian package (vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb) to the /tmp folder on the Raspberry Pi.
2. Install the driver package by calling (replace x.x.x by the current version number):

sudo dpkg -i /tmp/vc-mipi-driver-bcm2835-dkms_x.x.x_armhf.deb

3. Edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
choose the correct platform by uncommenting the corresponding line
choose the correct overlay according to your MIPI module and platform by uncommenting the corresponding line (for the IMX565, IMX566, IMX567, IMX568 please
activate the overlay for the IMX568.)
choose the desired sensor mode (see chapter Sensor modes below for mode description)
change the IO configuration if necessary (see chapter IO configuration below for IO description)
activate the self-triggered mode (see chapter Self-triggered mode below)

All these settings can be done for cam0 and cam1 in case you are using a Raspberry Pi CMIO or a VC CMIO.

Part 2:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

Example of configuration file for the OV9281 MIPI module on a Raspberry Pi 3B+ in sensor mode 0.

4. Reboot.

Note

For the IMX565, IMX566, IMX567, IMX568 please activate the overlay for the IMX568.

2.4 First Image Acquisition Test

A sensor device should be listed as Video input at the following command output (from the Video4Linux-Control):

v4l2-ctl --all

The following command dumps sensor data:

v4l2-ctl --stream-mmap --stream-count=-1 -d /dev/video0 --stream-to=/dev/null

It will output subsequent lines ending with a frames-per-second information (in the example named [number]) until pressing CTRL-C:

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< [number] fps
<<<<<<<<<<<<<<<<<<<<<<<^C

2.5 Running the Demo

The demo itself is a program named vcmipidemo and its source code is mainly in the file vcmipidemo.c. However more programs are provided, namely the vcimgnetsrv, a
network image server, and its counterpart vcimgnetclient.py. The vcimgnetsrv is started as background service, and the vcmipidemo connects to it. Then you can use the
vcimgnetclient.py on your PC to view live captured images.
But for the first run it is better to just run the vcmipidemo and check if it shows the ascii representation. This works without any network cable attached. You can then output
the captured image to the framebuffer of the display by using the -f command line switch.

2.5.1 Compile the programs

1. Unpack the previously downloaded archive vcmipidemo_x.x.x.zip and copy the folder vcmipidemo to the Raspberry Pi (for example to /home/pi/)

1. Change to the subdirectory named vcmipidemo/src.
2. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

2.5.2 Execute the demo

Just run the demo itself:

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

VC MIPI OV7251 Mode Image format (bits) Lanes Capture mode Resolution
 0 10 2 Streaming 640x480
 1 8 2 Streaming 640x480
 2 10 2 External trigger 640x480
 3 8 2 External trigger 640x480

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

./vcmipidemo

or with framebuffer output:

./vcmipidemo -f

or with live view over ethernet:

./vcimgnetsrv &

./vcmipidemo

For live view over ethernet, execute the vcimgnetclient.py at the client. This needs Python 2 and PyGTK. Install both following packages in this order (Windows):

Python 2: https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
PyGTK: https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

Note

You can change exposure and gain values by vcmipidemo command line arguments. To get a listing of possible parameters, just call it with a -?:

./vcmipidemo -?

2.6 Switching Sensor Configuration

2.6.1 Sensor modes

The sensor driver provides different modes which support several features. They can be switched by changing values of sensor driver parameters.
To list available parameters of the sensor driver kernel module, you can use the following command:

dmesg

You can also check the table below (Sensor modes description) for a complete list of available sensor modes.

Example of the dmesg command for an OV9281 MIPI module, showing the available sensor modes.

To set the desired mode, edit the file /boot/config_vc-mipi-driver-bcm2835.txt (for example with nano with the command: sudo nano /boot/config_vc-mipi-driver-bcm2835.txt).
Change the sensor mode by modifing dtparam:

dtparam=cam0_sensor_mode_1

The number after the underscore is the sensor mode. For mode 0 the correct setting would be dtparam=cam0_sensor_mode_0.

Example of setting the sensor mode to 1 for cam0.

2.6.2 Sensor modes description

This table lists the available modes for all mipi modules.

https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi
https://files.vision-components.com/ImageTransfer/python-2.7.11.msi
https://files.vision-components.com/ImageTransfer/pygtk-all-in-one-2.24.2.win32-py2.7.msi

 0 10 2 Streaming 1280x800
 1 8 2 Streaming 1280x800
 2 10 2 External trigger 1280x800
 3 8 2 External trigger 1280x800

VC MIPI IMX178 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 3104x2076
 1 10 2 Streaming 3104x2076
 2 12 2 Streaming 3104x2076
 3 14 2 Streaming 3104x2076
 4 8 2 External trigger 3104x2076
 5 10 2 External trigger 3104x2076
 6 12 2 External trigger 3104x2076
 7 14 2 External trigger 3104x2076
 8 8 4 Streaming 3104x2076
 9 10 4 Streaming 3104x2076
 10 12 4 Streaming 3104x2076
 11 14 4 Streaming 3104x2076
 12 8 4 External trigger 3104x2076
 13 10 4 External trigger 3104x2076
 14 12 4 External trigger 3104x2076
 15 14 4 External trigger 3104x2076

VC MIPI IMX183 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 5440x3648
 1 10 2 Streaming 5440x3648
 2 12 2 Streaming 5440x3648
 3 8 2 External trigger 5440x3648
 4 10 2 External trigger 5440x3648
 5 12 2 External trigger 5440x3648
 6 8 4 Streaming 5440x3648
 7 10 4 Streaming 5440x3648
 8 12 4 Streaming 5440x3648
 9 8 4 External trigger 5440x3648
 10 10 4 External trigger 5440x3648
 11 12 4 External trigger 5440x3648

VC MIPI IMX226 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 3840x3046
 1 10 2 Streaming 3840x3046
 2 12 2 Streaming 3840x3046
 3 8 2 External trigger 3840x3046
 4 10 2 External trigger 3840x3046
 5 12 2 External trigger 3840x3046
 6 8 4 Streaming 3840x3046
 7 10 4 Streaming 3840x3046
 8 12 4 Streaming 3840x3046
 9 8 4 External trigger 3840x3046
 10 10 4 External trigger 3840x3046
 11 12 4 External trigger 3840x3046

VC MIPI IMX250 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 2432x2048
 1 10 2 Streaming 2432x2048
 2 12 2 Streaming 2432x2048
 3 8 2 External trigger 2432x2048
 4 10 2 External trigger 2432x2048
 5 12 2 External trigger 2432x2048
 6 8 4 Streaming 2432x2048
 7 10 4 Streaming 2432x2048
 8 12 4 Streaming 2432x2048
 9 8 4 External trigger 2432x2048
 10 10 4 External trigger 2432x2048
 11 12 4 External trigger 2432x2048

VC MIPI IMX252 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 2048x1536
 1 10 2 Streaming 2048x1536
 2 12 2 Streaming 2048x1536
 3 8 2 External trigger 2048x1536
 4 10 2 External trigger 2048x1536
 5 12 2 External trigger 2048x1536
 6 8 4 Streaming 2048x1536
 7 10 4 Streaming 2048x1536
 8 12 4 Streaming 2048x1536
 9 8 4 External trigger 2048x1536
 10 10 4 External trigger 2048x1536
 11 12 4 External trigger 2048x1536

VC MIPI OV9281 Mode Image format (bits) Lanes Capture mode ResolutionVC MIPI OV9281 Mode Image format (bits) Lanes Capture mode Resolution

VC MIPI IMX264 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 2432x2048
 1 10 2 Streaming 2432x2048
 2 12 2 Streaming 2432x2048
 3 8 2 External trigger 2432x2048
 4 10 2 External trigger 2432x2048
 5 12 2 External trigger 2432x2048

VC MIPI IMX265 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 2048x1536
 1 10 2 Streaming 2048x1536
 2 12 2 Streaming 2048x1536
 3 8 2 External trigger 2048x1536
 4 10 2 External trigger 2048x1536
 5 12 2 External trigger 2048x1536

VC MIPI IMX273 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 1440x1080
 1 10 2 Streaming 1440x1080
 2 12 2 Streaming 1440x1080
 3 8 2 External trigger 1440x1080
 4 10 2 External trigger 1440x1080
 5 12 2 External trigger 1440x1080
 6 8 4 Streaming 1440x1080
 7 10 4 Streaming 1440x1080
 8 12 4 Streaming 1440x1080
 9 8 4 External trigger 1440x1080
 10 10 4 External trigger 1440x1080
 11 12 4 External trigger 1440x1080
 12 8 2 Streaming 720x540 (binning)
 13 10 2 Streaming 720x540 (binning)
 14 12 2 Streaming 720x540 (binning)
 15 8 2 External trigger 720x540 (binning)
 16 10 2 External trigger 720x540 (binning)
 17 12 2 External trigger 720x540 (binning)
 18 8 4 Streaming 720x540 (binning)
 19 10 4 Streaming 720x540 (binning)
 20 12 4 Streaming 720x540 (binning)
 21 8 4 External trigger 720x540 (binning)
 22 10 4 External trigger 720x540 (binning)
 23 12 4 External trigger 720x540 (binning)

VC MIPI IMX290 Mode Image format (bits) Lanes Capture mode Resolution
 0 10 2 Streaming 1920x1080
 1 10 4 Streaming 1920x1080

VC MIPI IMX296 Mode Image format (bits) Lanes Capture mode Resolution
 0 10 1 Streaming 1440x1080
 1 10 1 External trigger 1440x1080
 2 10 1 Streaming 720x540 (binning)
 3 10 1 External trigger 720x540 (binning)

VC MIPI IMX296 C Mode Image format (bits) Lanes Capture mode Resolution
 0 10 1 Streaming 1440x1080
 1 10 1 External trigger 1440x1080

VC MIPI IMX297 Mode Image format (bits) Lanes Capture mode Resolution
 0 10 1 Streaming 720x540
 1 10 1 External trigger 720x540

VC MIPI IMX327 C Mode Image format (bits) Lanes Capture mode Resolution
 0 10 2 Streaming 1920x1080
 1 10 4 Streaming 1920x1080

VC MIPI IMX335 Mode Image format (bits) Lanes Capture mode Resolution
 0 10 2 Streaming 2560x1964
 1 10 2 Streaming 2560x1964
 2 12 2 Streaming 2560x1964
 3 12 2 Streaming 2560x1964
 4 10 4 Streaming 2560x1964
 5 10 4 Streaming 2560x1964
 6 12 4 Streaming 2560x1964
 7 12 4 Streaming 2560x1964

 0 8 2 Streaming 1920x1200
 1 10 2 Streaming 1920x1200
 2 12 2 Streaming 1920x1200

VC MIPI IMX392 Mode Image format (bits) Lanes Capture mode ResolutionVC MIPI IMX392 Mode Image format (bits) Lanes Capture mode Resolution

 3 8 2 External trigger 1920x1200
 4 10 2 External trigger 1920x1200
 5 12 2 External trigger 1920x1200
 6 8 4 Streaming 1920x1200
 7 10 4 Streaming 1920x1200
 8 12 4 Streaming 1920x1200
 9 8 4 External trigger 1920x1200
 10 10 4 External trigger 1920x1200
 11 12 4 External trigger 1920x1200

VC MIPI IMX412 C Mode Image format (bits) Lanes Capture mode Resolution
 0 10 2 Streaming 4056x3040
 1 10 4 Streaming 4056x3040

VC MIPI IMX415 C Mode Image format (bits) Lanes Capture mode Resolution
 0 10 2 Streaming 3864x2192
 1 10 4 Streaming 3864x2192

VC MIPI IMX462 C Mode Image format (bits) Lanes Capture mode Resolution
 0 10 2 Streaming 1920x1080
 1 10 4 Streaming 1920x1080

VC MIPI IMX565 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 4128x3008
 1 10 2 Streaming 4128x3008
 2 12 2 Streaming 4128x3008
 3 8 2 External trigger 4128x3008
 4 10 2 External trigger 4128x3008
 5 12 2 External trigger 4128x3008
 6 8 4 Streaming 4128x3008
 7 10 4 Streaming 4128x3008
 8 12 4 Streaming 4128x3008
 9 8 4 External trigger 4128x3008
 10 10 4 External trigger 4128x3008
 11 12 4 External trigger 4128x3008

VC MIPI IMX566 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 2848x2840
 1 10 2 Streaming 2848x2840
 2 12 2 Streaming 2848x2840
 3 8 2 External trigger 2848x2840
 4 10 2 External trigger 2848x2840
 5 12 2 External trigger 2848x2840
 6 8 4 Streaming 2848x2840
 7 10 4 Streaming 2848x2840
 8 12 4 Streaming 2848x2840
 9 8 4 External trigger 2848x2840
 10 10 4 External trigger 2848x2840
 11 12 4 External trigger 2848x2840

VC MIPI IMX567 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 2432x2048
 1 10 2 Streaming 2432x2048
 2 12 2 Streaming 2432x2048
 3 8 2 External trigger 2432x2048
 4 10 2 External trigger 2432x2048
 5 12 2 External trigger 2432x2048
 6 8 4 Streaming 2432x2048
 7 10 4 Streaming 2432x2048
 8 12 4 Streaming 2432x2048
 9 8 4 External trigger 2432x2048
 10 10 4 External trigger 2432x2048
 11 12 4 External trigger 2432x2048

VC MIPI IMX568 Mode Image format (bits) Lanes Capture mode Resolution
 0 8 2 Streaming 2432x2048
 1 10 2 Streaming 2432x2048
 2 12 2 Streaming 2432x2048
 3 8 2 External trigger 2432x2048
 4 10 2 External trigger 2432x2048
 5 12 2 External trigger 2432x2048
 6 8 4 Streaming 2432x2048
 7 10 4 Streaming 2432x2048
 8 12 4 Streaming 2432x2048
 9 8 4 External trigger 2432x2048
 10 10 4 External trigger 2432x2048
 11 12 4 External trigger 2432x2048

VC MIPI IMX392 Mode Image format (bits) Lanes Capture mode ResolutionVC MIPI IMX392 Mode Image format (bits) Lanes Capture mode Resolution

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

2.6.3 IO configuration

Some sensors can be triggered externally and also provide a flash output. These two features can be switched using the cam0_io_config parameter.

Example of setting the IO configuration to 8 for cam0.

This parameter corresponds to the value written to register 3 on the MIPI module. A value of 0x08 activates the trigger input. A value of 0x09 activates the trigger input and
the flash output.
After modifying the sensor mode or the IO configuration, save the changes and reboot.

2.6.4 Self-triggered mode

On some modules the streaming mode does not allow a flash output signal. In this case it is necessary to activate the so-called self-triggered mode (from the user point of
view it behaves like the streaming mode). This is done by choosing one of the external trigger modes and additionally overriding the value of the register 0x0108 of the mipi
controller.

Register 0x108 configuration: set to 4 for self-triggered mode.

A detailed documentation of the mipi controller registers is available on request.

3 Troubleshooting and Background Information

3.1 Q/A

Problem:

Running make fails with an error:

⋮
make[1]: *** /lib/modules/4.14.79-v7+/build: No such file or directory. Stop.
⋮

Solution:

The system needs the build tools of the kernel to build the sensor driver (which itself is a kernel module). They can be obtained by installing the RaspberryPi
Kernel Headers package named raspberrypi-kernel-headers, see https://www.raspberrypi.org/documentation/linux/kernel/headers.md

Problem:

The sensor module driver cannot be started, it shows an error:

⋮
[4.773298] imx296 0-0060: Error -5 setting default controls
[4.773346] imx296: probe of 0-0060 failed with error -5
⋮

Solution:

Be sure no other device is connected to the I²C bus 0! For example, the touch screen controller of the Raspberry PI display may not be connected.
Check the orientation of the cable at the sensor side as well as at the cpu side. Also check if the cable and the sockets are orthogonal.

https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md
https://www.raspberrypi.org/documentation/linux/kernel/headers.md

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

3.2 Driver Knowledge

The following tasks have to be done to do an image acquisition with the camera sensor:

Information about the new sensor hardware and its connector must be provided to the kernel by adding it to the so-called kernel device tree as overlay.
This device tree overlay must be applied to the kernel device tree.
For the driver to communicate with the sensor the I²C bus must be set up to connect between the CPU and the MIPI socket.
The driver itself must be installed as kernel modules.
Contiguous memory must be reserved for the captured image.

The driver is separated into parts exclusive for the platform, e.g. the Raspi3BPlus as well as generic parts.
The main configuration file for the driver is named:

config_vc-mipi-driver-bcm2835.txt

It should include the platform specific configuration, here the file:

config_vc-mipi-driver-bcm2835-raspi3Bplus.txt

and also refer to the sensor overlays (see the following) you would like to use. Overlays can be found relative to the configuration file at the ./overlays/ directory.

3.2.1 Providing device tree overlays

The so-called kernel device tree overlay contains information about the socket and periphery where the mipi module is connected to.
Here are the steps to compile a device tree overlay by yourself:
We assume to compile an example overlay file named

example123-overlay.dts

1. Install the device-tree-compiler package via:

sudo apt-get install device-tree-compiler

2. Compile the dtbo kernel device tree overlay binary representation by using the following command:

dtc -@ -I dts -O dtb -o example123.dtbo example123-overlay.dts

3. Copy the binary to

/boot/overlays/example123.dtbo

3.2.1.1 Telling the RTOS to use the device tree overlay

Raspbian Boot overview

Before starting the linux kernel, the Raspberry Pi first boots a real-time operating system (RTOS) on the GPU. This RTOS looks into the file /boot/config.txt. It loads a default
Kernel device tree and patches it by overlaying the device tree parts listed by the dtoverlay entries at the file /boot/config.txt. To add new information to the device tree this
config-file (or a therein included file) needs the following entry:

dtoverlay=example123

The device tree will then be modified by the overlay at

/boot/overlays/example123.dtbo

before the linux kernel is run.
To check the behaviour of the RTOS one can look at the output by the following command:

sudo vcdbg log msg

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

Example
After reboot the applied overlays can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: Loaded overlay'

Here is a sample output:

002143.555: Loaded overlay 'example123'

A deeper insight into the device tree overlays and parameters can be found at https://www.raspberrypi.org/documentation/configuration/device-tree.md

3.2.2 Set up the I²C bus for driver-sensor communication

For the RaspberryPi 3B+ there is only one socket available, so there is no need to change the CSI port information at a device tree overlay provided.

Trigger input is hardwired to pin 133, trigger output to pin 134, unuseable/unaccessible.

Note

On this Raspberry PI model the pins used for trigger input and output are hard-wired to some GPIO, so external triggering is not possible (no access).

Warning

Hardware will be damaged and warranty lost if you use pins as outputs where the sensor has its own flash output, so double-check before you (if you are able to)
access the trigger gpio pins! Don't activate sensor flash or sync output (e.g via the dtparam cam*_io_config) if the wires are connected to an output, for example at
a RaspberryPi3B+!

The sensor driver needs to communicate via the I²C Bus named VC. To be able to access it, assigning it to the CPU is mandatory.

Raspbian I²C connection: Influence of the parameter dtparam=i2c_vc=on

The I²C bus is assigned by the RTOS. So the file /boot/config_vc-mipi-driver-bcm2835-raspi3Bplus.txt has an entry:

dtparam=i2c_vc=on

It changes the physical I²C bus VC accessor from the default, the GPU, to the CPU. The referred overlay vc-mipi-bcm2835-raspi3Bplus-i2c0 makes it accessible for linux
over GPIO pins.

Note

Some hardware like the touch display demands exclusiveness over the I²C Bus VC or their drivers assume the I²C Bus VC is connected to the RTOS. Since the sensor
driver must communicate with the sensor module connected to the MIPI socket, neither the exclusiveness nor the RTOS connectedness is given. So the I²C bus VC cannot

https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

be used for other purposes when the sensor is attached.

Example
After reboot the dtparam line can be shown by executing the following command:

sudo vcdbg log msg 2>&1 | grep '^[0-9\.]\+: dtparam:'

Here is a sample output:

002077.358: dtparam: audio=on
002096.467: dtparam: i2c_vc=on

3.2.3 Providing the sensor driver as kernel module

Here are the steps to compile the kernel modules by yourself:

1. After installation of the DKMS module the driver will be found at a subdirectory of the folder /usr/src/:

vc-mipi-driver-bcm2835-versionnumber

2. Copy it to a new place and change to that new place, since the previous mentioned subdirectory is part of the DKMS package management! Be aware, that after a new
kernel version installation, the DKMS will rebuild the driver. Check where the sources for that rebuild lies to have your customized setup after the kernel update.

3. The source directory contains a Makefile to compile the driver. Do so by calling:

make clean all

4. The directory then contains the driver as several modules. They must be copied to their place
*.ko to /lib/modules/$(uname -r)/kernel/drivers/media/i2c/
*.txt to /boot/
overlays/*.dtbo to /boot/overlays/

Afterwards the new modules must be registered by calling depmod -a and the main configuration file must be included at the /boot/config.txt.
All this can be also done by calling:

make install
debian/postinst

The module drivers will then be loaded by calling the following commands in that order (or automatically at boot):

modprobe vc_mipi_modules_0
modprobe bcm2835-unicam

Example
After reboot you can display the output of the vc_mipi_imx296 kernel module by executing the following command:

dmesg | grep '^[^]]*\] vc_mipi_modules_0'

Here is a sample output which will be different at your setup:

[13.260918] vc_mipi_modules_0 0-001a: VC_SEN_FPGA found!
[13.260930] vc_mipi_modules_0 0-001a: [MAGIC] [mipi-module]
[13.260941] vc_mipi_modules_0 0-001a: [MANUF.] [Vision Components] [MID=0x0427]
…
[13.464166] vc_mipi_modules_0 0-001a: VC_SEN_MODE=0 PowerOn STATUS=0x80 try=2
…

3.2.4 Reserving Contiguous Memory for the Image Captures

In contrast to the normally used non-contiguous memory the capture hardware needs a contiguous memory region to transfer pixel data to by using direct memory access
(DMA).
To reserve other than 128MByte of memory for capturing images, edit the overlay file named

vc-mipi-common-memory-contiguous-overlay.dts

and change its size entry, for example to use 64MiB:

size = <0x4000000>; /* 64MiB */

Compile the .dts file and copy its .dtbo file to /boot/overlays/.
After reboot the kernel message line beginning with Memory: will show an updated entry (last one):

[0.000000] Memory: 881620K/970752K available (8192K kernel code, 653K rwdata, 2220K rodata, 1024K init, 822K bss, 23596K reserved, 65536K cma-
reserved)

Example
After reboot you can show the line by executing the following command:

dmesg | grep '^[^]]*\] Memory:'

Here is a sample output which will look slightly different at your setup:

[0.000000] Memory: 817108K/970752K available (7168K kernel code, 576K rwdata, 2076K rodata, 1024K init, 698K bss, 22572K reserved, 131072K cma-reserved)

Vision Components GmbH
Ottostr. 2
76275 Ettlingen
Germany

Phone: +49 (0) 7243 2167-0
www.vc-linux.com
www.vision-components.com

https://www.vc-linux.com/
https://www.vision-components.com/

